**Introduction to General Relativity**

by Gerard 't Hooft

**Publisher**: Rinton Press 2010**ISBN/ASIN**: 1589490002**ISBN-13**: 9781589490000**Number of pages**: 69

**Description**:

This book presents, in a natural and beautiful way, the general relativity as a scheme for describing the gravitational field and the equations it obeys. Starting from physical motivations, curved coordinates are introduced, and then the notion of an affine connection field is added. At a later step, the metric field is added. One then sees clearly how space and time get more and more structure, until finally Einstein's field equations logically come out.

Download or read it online for free here:

**Download link**

(400KB, PDF)

## Similar books

**Light Rays, Singularities, and All That**

by

**Edward Witten**-

**arXiv.org**

This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem.

(

**3142**views)

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**6954**views)

**A No-Nonsense Introduction to General Relativity**

by

**Sean M. Carroll**

General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.

(

**7417**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**21354**views)