Lie Groups in Physics by G. 't Hooft, M. J. G. Veltman

Small book cover: Lie Groups in Physics

Lie Groups in Physics

Publisher: Utrecht University
Number of pages: 75

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); Representations of SU(N).

Download or read it online for free here:
Download link
(450KB, PDF)

Similar books

Book cover: The Place of Partial Differential Equations in Mathematical PhysicsThe Place of Partial Differential Equations in Mathematical Physics
by - Patna University
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
Book cover: Introduction to Spectral Theory of Schrödinger OperatorsIntroduction to Spectral Theory of Schrödinger Operators
by - Vinnitsa State Pedagogical University
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
Book cover: Graph and Network Theory in Physics: A Short IntroductionGraph and Network Theory in Physics: A Short Introduction
by - arXiv
Text consisting of some of the main areas of research in graph theory applied to physics. It includes graphs in condensed matter theory, such as the tight-binding and the Hubbard model. It follows the study of graph theory and statistical physics...
Book cover: Mathematics for the Physical SciencesMathematics for the Physical Sciences
by - Dover Publications
The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.