Lie Groups in Physics
by G. 't Hooft, M. J. G. Veltman
Publisher: Utrecht University 2007
Number of pages: 75
Description:
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); Representations of SU(N).
Download or read it online for free here:
Download link
(450KB, PDF)
Similar books

by Jerrold E. Marsden - Publish or Perish, inc
The book introduces some methods of global analysis which are useful in various problems of mathematical physics. The author wants to make use of ideas from geometry to shed light on problems in analysis which arise in mathematical physics.
(16917 views)

by Max Lein - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(9907 views)

by J.F. Carinena, J. de Lucas - arXiv
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.
(10707 views)

by Douglas Lundholm, Lars Svensson - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(16179 views)