**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by T. Hastie, R. Tibshirani, J. Friedman

**Publisher**: Springer 2009**ISBN/ASIN**: 0387848576**ISBN-13**: 9780387848570**Number of pages**: 764

**Description**:

This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Download or read it online for free here:

**Download link**

(8.2MB, PDF)

## Similar books

**An Introductory Study on Time Series Modeling and Forecasting**

by

**Ratnadip Adhikari, R. K. Agrawal**-

**arXiv**

This work presents a concise description of some popular time series forecasting models used in practice, with their features. We describe three important classes of time series models, viz. the stochastic, neural networks and SVM based models.

(

**5803**views)

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**4393**views)

**Gaussian Processes for Machine Learning**

by

**Carl E. Rasmussen, Christopher K. I. Williams**-

**The MIT Press**

Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.

(

**18657**views)

**Statistical Learning and Sequential Prediction**

by

**Alexander Rakhlin, Karthik Sridharan**-

**University of Pennsylvania**

This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...

(

**1863**views)