**The Elements of Statistical Learning: Data Mining, Inference, and Prediction**

by T. Hastie, R. Tibshirani, J. Friedman

**Publisher**: Springer 2009**ISBN/ASIN**: 0387848576**ISBN-13**: 9780387848570**Number of pages**: 764

**Description**:

This book is an attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, the authors emphasize the methods and their conceptual underpinnings rather than their theoretical properties. This book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Download or read it online for free here:

**Download link**

(8.2MB, PDF)

## Similar books

**A Course in Machine Learning**

by

**Hal DaumÃ© III**-

**ciml.info**

Tis is a set of introductory materials that covers most major aspects of modern machine learning (supervised and unsupervised learning, large margin methods, probabilistic modeling, etc.). It's focus is on broad applications with a rigorous backbone.

(

**14501**views)

**Boosting: Foundations and Algorithms**

by

**Robert E. Schapire, Yoav Freund**-

**The MIT Press**

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.

(

**2955**views)

**The LION Way: Machine Learning plus Intelligent Optimization**

by

**Roberto Battiti, Mauro Brunato**-

**Lionsolver, Inc.**

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex problems. This book is about increasing the automation level and connecting data directly to decisions and actions.

(

**25227**views)

**A Brief Introduction to Machine Learning for Engineers**

by

**Osvaldo Simeone**-

**arXiv.org**

This monograph provides the starting point to the literature that every engineer new to machine learning needs. It offers a basic and compact reference that describes key ideas and principles in simple terms and within a unified treatment.

(

**2330**views)