**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by Leif Mejlbro

**Publisher**: BookBoon 2009**ISBN-13**: 9788776815066**Number of pages**: 113

**Description**:

The book is a collection of solved problems in linear algebra, this first volume covers linear equations, matrices and determinants. All examples are solved, and the solutions usually consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

Download or read it online for free here:

**Download link**

(3.1MB, PDF)

## Similar books

**Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra**

by

**Ray M. Bowen, C.-C.Wang**-

**Springer**

This book presents the basics of vector and tensor analysis for science and engineering students. Volume 1 covers algebraic structures and a modern introduction to the algebra of vectors and tensors. Clear presentation of mathematical concepts.

(

**12409**views)

**Notes on Numerical Linear Algebra**

by

**George Benthien**

Tutorial describing many of the standard numerical methods used in Linear Algebra. Topics include Gaussian Elimination, LU and QR Factorizations, The Singular Value Decomposition, Eigenvalues and Eigenvectors via the QR Method, etc.

(

**8768**views)

**Set Linear Algebra and Set Fuzzy Linear Algebra**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**InfoLearnQuest**

Set linear algebras, introduced by the authors in this book, are the most generalized form of linear algebras. These structures make use of very few algebraic operations and are easily accessible to non-mathematicians as well.

(

**7871**views)

**The Hermitian Two Matrix Model with an Even Quartic Potential**

by

**M. Duits, A.B.J. Kuijlaars, M. Yue Mo**-

**American Mathematical Society**

The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.

(

**890**views)