**An Introduction to Nonassociative Algebras**

by Richard D. Schafer

**Publisher**: Project Gutenberg 2008**ISBN/ASIN**: 0486688135**Number of pages**: 81

**Description**:

Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students and other mathematicians meeting the subject for the first time.

Download or read it online for free here:

**Download link**

(PDF, TeX)

## Similar books

**Smarandache Loops**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.

(

**8094**views)

**Set Theoretic Approach to Algebraic Structures in Mathematics**

by

**W. B. Vasantha Kandasamy, Florentin Smarandache**-

**Educational Publisher**

This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.

(

**8306**views)

**Algebraic Invariants**

by

**Leonard E. Dickson**-

**J. Wiley & Sons**

This introduction to the classical theory of invariants of algebraic forms is divided into three parts: linear transformations; algebraic properties of invariants and covariants; symbolic notation of Aronhold and Clebsch.

(

**7776**views)

**Lie Algebras**

by

**Shlomo Sternberg**

The Campbell Baker Hausdorff formula, sl(2) and its representations, classical simple algebras, Engel-Lie-Cartan-Weyl, conjugacy of Cartan subalgebras, simple finite dimensional algebras, cyclic highest weight modules, Serreās theorem, and more.

(

**15090**views)