**Lectures on the Geometry of Quantization**

by Sean Bates, Alan Weinstein

**Publisher**: University of California at Berkeley 1997**ISBN/ASIN**: 0821807986**ISBN-13**: 9780821807989**Number of pages**: 134

**Description**:

This is an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role which these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and that of quantum mechanics (unitary flows on Hilbert spaces).

Download or read it online for free here:

**Download link**

(720KB, PDF)

## Similar books

**The Geometrization of Physics**

by

**Richard S. Palais**-

**University of California at Irvine**

The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.

(

**7536**views)

**Geometry and Group Theory**

by

**Christopher Pope**-

**Texas A&M University**

Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.

(

**12177**views)

**First Steps Towards a Symplectic Dynamics**

by

**Barney Bramham, Helmut Hofer**-

**arXiv**

Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.

(

**6118**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**10861**views)