**Combinatorial and Computational Geometry**

by J. E. Goodman, J. Pach, E. Welzl

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521848628**ISBN-13**: 9780521848626**Number of pages**: 616

**Description**:

This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Categorical Geometry**

by

**Zhaohua Luo**

This is a book on the general theory of analytic categories. From the table of contents: Introduction; Analytic Categories; Analytic Topologies; Analytic Geometries; Coherent Analytic Categories; Coherent Analytic Geometries; and more.

(

**9830**views)

**Modern Geometry**

by

**Robert Sharpley**-

**University of South Carolina**

This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.

(

**7981**views)

**Tilings and Patterns**

by

**E O Harriss**-

**Mathematicians.org.uk**

Contents: Background Material (Euclidean Space, Delone Sets, Z-modules and lattices); Tilings of the plane (Periodic, Aperiodic, Penrose Tilings, Substitution Rules and Tiling, Matching Rules); Symbolic and Geometric tilings of the line.

(

**8446**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**13511**views)