**Combinatorial and Computational Geometry**

by J. E. Goodman, J. Pach, E. Welzl

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521848628**ISBN-13**: 9780521848626**Number of pages**: 616

**Description**:

This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Tilings and Patterns**

by

**E O Harriss**-

**Mathematicians.org.uk**

Contents: Background Material (Euclidean Space, Delone Sets, Z-modules and lattices); Tilings of the plane (Periodic, Aperiodic, Penrose Tilings, Substitution Rules and Tiling, Matching Rules); Symbolic and Geometric tilings of the line.

(

**7404**views)

**The Geometry of the Sphere**

by

**John C. Polking**-

**Rice University**

We are interested here in the geometry of an ordinary sphere. In plane geometry we study points, lines, triangles, polygons, etc. On the sphere there are no straight lines. Therefore it is natural to use great circles as replacements for lines.

(

**6407**views)

**Topics in Geometry**

by

**John O'Connor**-

**University of St Andrews**

Contents: Foundations; Linear groups; Isometries of Rn; Isometries of the line; Isometries of the plane; Isometries in 3 dimensions; Symmetry groups in the plane; Platonic solids; Finite symmetry groups of R3; Full finite symmetry groups in R3; etc.

(

**7522**views)

**The Fourth Dimension**

by

**Charles Howard Hinton**-

**S. Sonnenschein & Co.**

C. H. Hinton discusses the subject of the higher dimensionality of space, his aim being to avoid mathematical subtleties and technicalities, and thus enable his argument to be followed by readers who are not sufficiently conversant with mathematics.

(

**1032**views)