Logo

Combinatorial and Computational Geometry

Large book cover: Combinatorial and Computational Geometry

Combinatorial and Computational Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521848628
ISBN-13: 9780521848626
Number of pages: 616

Description:
This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: The Axioms Of Descriptive GeometryThe Axioms Of Descriptive Geometry
by - Cambridge University Press
In this book, after the statement of the axioms, the ideas considered are those concerning the association of Projective and Descriptive Geometry by means of ideal points, point to point correspondence, congruence, distance, and metrical geometry.
(4067 views)
Book cover: Geometry and the ImaginationGeometry and the Imagination
by - Rutgers University, Newark
These are notes from an experimental mathematics course entitled Geometry and the Imagination as developed by Conway, Doyle, Thurston and others. The course aims to convey the richness, diversity, connectedness, depth and pleasure of mathematics.
(774 views)
Book cover: Projective GeometryProjective Geometry
by
The techniques of projective geometry provide the technical underpinning for perspective drawing and in particular for the modern version of the Renaissance artist, who produces the computer graphics we see every day on the web.
(11633 views)
Book cover: Convex Geometric AnalysisConvex Geometric Analysis
by - Cambridge University Press
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis.
(8107 views)