Logo

Stochastic Integration and Stochastic Differential Equations

Small book cover: Stochastic Integration and Stochastic Differential Equations

Stochastic Integration and Stochastic Differential Equations
by

Publisher: University of Texas
Number of pages: 643

Description:
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and enough functional analysis to recognize the Hahn-Banach theorem.

Home page url

Download or read it online for free here:
Download link
(DVI/PS/PDF)

Similar books

Book cover: Basic Data Analysis and More: A Guided Tour Using PythonBasic Data Analysis and More: A Guided Tour Using Python
by - arXiv
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).
(8283 views)
Book cover: Bayesian Field TheoryBayesian Field Theory
by - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(503 views)
Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(10691 views)
Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(8869 views)