**A Sampler of Riemann-Finsler Geometry**

by D. Bao, R. Bryant, S. Chern, Z. Shen

**Publisher**: Cambridge University Press 2004**ISBN/ASIN**: 0521831814**ISBN-13**: 9780521831819**Number of pages**: 376

**Description**:

Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. This book presents an expository account of seven important topics in Riemann-Finsler geometry, ones which have recently undergone significant development but have not had a detailed pedagogical treatment elsewhere. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles, and include a variety of instructive examples.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Differential Geometry**

by

**John Douglas Moore**-

**University of California**

Foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms.

(

**8855**views)

**Riemannian Submanifolds: A Survey**

by

**Bang-Yen Chen**-

**arXiv**

Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.

(

**5291**views)

**Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation**

by

**M. Arnaudon, F. Barbaresco, L. Yang**-

**arXiv**

This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.

(

**7899**views)

**An Introduction to Riemannian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

The main purpose of these lecture notes is to introduce the beautiful theory of Riemannian Geometry. Of special interest are the classical Lie groups allowing concrete calculations of many of the abstract notions on the menu.

(

**11971**views)