**Linear Algebra, Infinite Dimensions, and Maple**

by James V. Herod

**Publisher**: Georgia Tech 1997

**Description**:

These notes are about linear operators on Hilbert Spaces, written at a beginning graduate level. The text is an attempt to provide a way to understand the ideas without the students already having the mathematical maturity that a good undergraduate analysis course could provide.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Super Linear Algebra**

by

**W. B. V. Kandasamy, F. Smarandache**-

**InfoQuest**

In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra.

(

**15166**views)

**Introduction to Linear Bialgebra**

by

**W.B.V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**arXiv**

This book introduced a new algebraic structure called linear bialgebra. We have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these structures.

(

**10926**views)

**The Hermitian Two Matrix Model with an Even Quartic Potential**

by

**M. Duits, A.B.J. Kuijlaars, M. Yue Mo**-

**American Mathematical Society**

The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.

(

**4573**views)

**Differential Equations and Linear Algebra**

by

**Simon J.A. Malham**-

**Heriot-Watt University**

From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.

(

**8486**views)