**Galois Theory**

by Christopher Cooper

**Publisher**: Macquarie University 2009**Number of pages**: 86

**Description**:

This text follows the usual path through to Galois groups, but just for subfields of the complex numbers. It takes as its goal the insolubility of polynomials by radicals. This is as far as we normally reach, though there is an additional chapter that gives an algebraic proof of the Fundamental Theorem of Algebra, using Sylow theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**5127**views)

**Class Field Theory**

by

**J. S. Milne**

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.

(

**6077**views)

**Geometry of the Quintic**

by

**Jerry Shurman**-

**Wiley-Interscience**

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...

(

**4634**views)

**The Elements of the Theory of Algebraic Numbers**

by

**Legh Wilber Reid**-

**The Macmillan company**

It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.

(

**4546**views)