**Elementary Theory of Numbers**

by Waclaw Sierpinski

**Publisher**: ICM 1964**Number of pages**: 516

**Description**:

The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian integers.

Download or read it online for free here:

**Read online**

(online preview)

## Similar books

**Theoretic Arithmetic**

by

**Thomas Taylor, A. J. Valpy**

The substance of all that has been written on this subject by Nicomachus, Iamblichus, and Boetius, together with some particulars respecting perfect, amicable, and other numbers, which are not to be found in the writings of modern mathematicians.

(

**6764**views)

**An Introduction to the Theory of Numbers**

by

**Leo Moser**-

**The Trillia Group**

The book on elementary number theory: compositions and partitions, arithmetic functions, distribution of primes, irrational numbers, congruences, Diophantine equations; combinatorial number theory, and geometry of numbers.

(

**13444**views)

**Elementary Number Theory**

by

**William Edwin Clark**-

**University of South Florida**

One might think that of all areas of mathematics arithmetic should be the simplest, but it is a surprisingly deep subject. It is assumed that students have some familiarity with set theory, calculus, and a certain amount of mathematical maturity.

(

**10437**views)

**A Friendly Introduction to Number Theory**

by

**Joseph H. Silverman**-

**Pearson Education, Inc.**

Introductory undergraduate text designed to entice non-math majors into learning some mathematics, while at the same time teaching them how to think mathematically. The exposition is informal, with a wealth of examples that are analyzed for patterns.

(

**5460**views)