**Elementary Theory of Numbers**

by Waclaw Sierpinski

**Publisher**: ICM 1964**Number of pages**: 516

**Description**:

The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian integers.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Elementary Number Theory**

by

**W W L Chen**-

**Macquarie University**

An introduction to the elementary techniques of number theory: division and factorization, arithmetic functions, congruences, quadratic residues, sums of integer squares, elementary prime number theory, Gauss sums and quadratic reciprocity.

(

**11334**views)

**An Introductory Course in Elementary Number Theory**

by

**Wissam Raji**-

**The Saylor Foundation**

These are notes for an undergraduate course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors. The exercises broaden the understanding of the concepts.

(

**4060**views)

**Theoretic Arithmetic**

by

**Thomas Taylor, A. J. Valpy**

The substance of all that has been written on this subject by Nicomachus, Iamblichus, and Boetius, together with some particulars respecting perfect, amicable, and other numbers, which are not to be found in the writings of modern mathematicians.

(

**8820**views)

**Elementary Number Theory**

by

**William Edwin Clark**-

**University of South Florida**

One might think that of all areas of mathematics arithmetic should be the simplest, but it is a surprisingly deep subject. It is assumed that students have some familiarity with set theory, calculus, and a certain amount of mathematical maturity.

(

**12237**views)