**The Geometrization of Physics**

by Richard S. Palais

**Publisher**: University of California at Irvine 1981**Number of pages**: 107

**Description**:

The major goal of these notes is to develop, in sufficient detail to be convincing, an observation that basically goes back to Kaluza and Klein in the early 1920's that not only can gauge fields of the "Yang-Mills" type be unified with the remarkable successful Einstein model of gravitation in a beautiful, simple, and natural manner, but also that when this unification is made they, like gravitational field, disappear as forces and are described by pure geometry, in the sense that particles simply move along geodesics of an appropriate Riemannian geometry.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Lectures on complex geometry, Calabi-Yau manifolds and toric geometry**

by

**Vincent Bouchard**-

**arXiv**

These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds.

(

**5369**views)

**Geometry of Quantum Mechanics**

by

**Ingemar Bengtsson**-

**Stockholms universitet, Fysikum**

These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.

(

**9549**views)

**An Introduction to Noncommutative Spaces and their Geometry**

by

**Giovanni Landi**-

**arXiv**

These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.

(

**8245**views)

**Lectures on the Geometry of Quantization**

by

**Sean Bates, Alan Weinstein**-

**University of California at Berkeley**

An introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role which these ideas play in formalizing the transition between the mathematics of classical dynamics and that of quantum mechanics.

(

**8181**views)