Logo

The Radon Transform by Sigurdur Helgason

Large book cover: The Radon Transform

The Radon Transform
by

Publisher: Birkhauser Boston
ISBN/ASIN: 0817641092
ISBN-13: 9780817641092
Number of pages: 196

Description:
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations X-ray technology, nuclear magnetic resonance scanning, and tomography.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Quadratic Forms and Their ApplicationsQuadratic Forms and Their Applications
by - American Mathematical Society
This volume includes papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed.
(6929 views)
Book cover: Modern GeometryModern Geometry
by - University of South Carolina
This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.
(6106 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(11723 views)
Book cover: Euclidean Plane and Its RelativesEuclidean Plane and Its Relatives
by
This book is meant to be rigorous, elementary and minimalist. At the same time it includes about the maximum what students can absorb in one semester. It covers Euclidean geometry, Inversive geometry, Non-Euclidean geometry and Additional topics.
(1615 views)