**Random Matrix Models and Their Applications**

by Pavel Bleher, Alexander Its

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521802091**ISBN-13**: 9780521802093**Number of pages**: 438

**Description**:

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its focus on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Design of Comparative Experiments**

by

**R. A. Bailey**-

**Cambridge University Press**

This book develops a coherent framework for thinking about factors that affect experiments and their relationships, including the use of Hasse diagrams. The book is ideal for advanced undergraduate and beginning graduate courses.

(

**15312**views)

**Lectures on Probability, Statistics and Econometrics**

by

**Marco Taboga**-

**statlect.com**

This e-book is organized as a website that provides access to a series of lectures on fundamentals of probability, statistics and econometrics, as well as to a number of exercises on the same topics. The level is intermediate.

(

**7962**views)

**Introduction to Probability and Statistics Using R**

by

**G. Jay Kerns**

A textbook for an undergraduate course in probability and statistics. The prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.

(

**3869**views)

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**401**views)