Logo

Random Matrix Models and Their Applications

Large book cover: Random Matrix Models and Their Applications

Random Matrix Models and Their Applications
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521802091
ISBN-13: 9780521802093
Number of pages: 438

Description:
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its focus on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Home page url

Download or read it online for free here:
Download link
(multiple PDF,PS files)

Similar books

Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(14094 views)
Book cover: Principles of Data AnalysisPrinciples of Data Analysis
by - Prasenjit Saha
This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.
(14425 views)
Book cover: Probability, Statistics and Stochastic ProcessesProbability, Statistics and Stochastic Processes
by
Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).
(11723 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(15606 views)