**The Eightfold Way: The Beauty of Klein's Quartic Curve**

by Silvio Levy

**Publisher**: Cambridge University Press 1999**ISBN/ASIN**: 0521660661**ISBN-13**: 9780521660662**Number of pages**: 331

**Description**:

The German mathematician Felix Klein discovered in 1879 that the surface that we now call the Klein quartic has many remarkable properties, including an incredible 336-fold symmetry, the maximum possible degree of symmetry for any surface of its type. This volume explores the rich tangle of properties and theories surrounding this multiform object.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Non-Euclidean Geometry: A Critical and Historical Study of its Development**

by

**Roberto Bonola**-

**Open Court Publishing Company**

Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.

(

**5259**views)

**The Elements Of Non-Euclidean Geometry**

by

**Julian Lowell Coolidge**-

**Oxford At The Clarendon Press**

Chapters include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; Geometric And Analytic Extension Of Space; etc.

(

**7426**views)

**The Elements of Non-Euclidean Geometry**

by

**D.M.Y. Sommerville**-

**G.Bell & Sons Ltd.**

Renowned for its lucid yet meticulous exposition, this text follows the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to such advanced topics as inversion and transformations.

(

**5663**views)

**Hyperbolic Geometry**

by

**J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry**-

**MSRI**

These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.

(

**4652**views)