Logo

Complex Analysis on Riemann Surfaces

Complex Analysis on Riemann Surfaces
by

Publisher: Harvard University
Number of pages: 89

Description:
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; Line bundles; Curves and their Jacobians; Hyperbolic geometry; Quasiconformal geometry.

Download or read it online for free here:
Download link
(560KB, PDF)

Similar books

Book cover: Calculus of Residua: Complex Functions Theory a-2Calculus of Residua: Complex Functions Theory a-2
by - BookBoon
This is the second part in the series of books on complex functions theory. From the table of contents: Introduction; Power Series; Harmonic Functions; Laurent Series and Residua; Applications of the Calculus of Residua; Index.
(7610 views)
Book cover: Lectures On The General Theory Of Integral FunctionsLectures On The General Theory Of Integral Functions
by - Chelsea Pub. Co.
These lectures give us, in the form of a number of elegant and illuminating theorems, the latest word of mathematical science on the subject of Integral Functions. They descend to details, they take us into the workshop of the working mathematician.
(2489 views)
Book cover: On Riemann's Theory of Algebraic Functions and their IntegralsOn Riemann's Theory of Algebraic Functions and their Integrals
by - Macmillan and Bowes
In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding.
(8389 views)
Book cover: Hyperbolic FunctionsHyperbolic Functions
by - John Wiley & Sons
College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.
(9200 views)