Logo

Convex Geometric Analysis by Keith Ball, Vitali Milman

Large book cover: Convex Geometric Analysis

Convex Geometric Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236

Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: The Geometry of the SphereThe Geometry of the Sphere
by - Rice University
We are interested here in the geometry of an ordinary sphere. In plane geometry we study points, lines, triangles, polygons, etc. On the sphere there are no straight lines. Therefore it is natural to use great circles as replacements for lines.
(6218 views)
Book cover: The Axioms Of Descriptive GeometryThe Axioms Of Descriptive Geometry
by - Cambridge University Press
In this book, after the statement of the axioms, the ideas considered are those concerning the association of Projective and Descriptive Geometry by means of ideal points, point to point correspondence, congruence, distance, and metrical geometry.
(4065 views)
Book cover: Combinatorial and Computational GeometryCombinatorial and Computational Geometry
by - Cambridge University Press
This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.
(9517 views)
Book cover: Euclidean Plane and Its RelativesEuclidean Plane and Its Relatives
by
This book is meant to be rigorous, elementary and minimalist. At the same time it includes about the maximum what students can absorb in one semester. It covers Euclidean geometry, Inversive geometry, Non-Euclidean geometry and Additional topics.
(1803 views)