A Pedestrian Introduction to the Mathematical Concepts of Quantum Physics
by Jan Govaerts
Publisher: arXiv 2008
Number of pages: 79
Description:
These notes offer a basic introduction to the primary mathematical concepts of quantum physics, and their physical significance, from the operator and Hilbert space point of view, highlighting more what are essentially the abstract algebraic aspects of quantization in contrast to more standard treatments of such issues, while also bridging towards the path integral formulation of quantization.
Download or read it online for free here:
Download link
(830KB, PDF)
Similar books

by Tom Mainiero - arXiv.org
This paper is an introduction to work motivated by the question 'can multipartite entanglement be detected by homological algebra?' We introduce cochain complexes associated to multipartite density states whose cohomology detects factorizability.
(4705 views)

by Richard B. Melrose, Gunther Uhlmann - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(11828 views)

by Valter Moretti - arXiv
The author reviews the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas ...
(8878 views)

by Douglas Lundholm - arXiv.org
These are lecture notes for a master-level course given at KTH, Stockholm, in the spring of 2017, with the primary aim of proving the stability of matter from first principles using modern mathematical methods in many-body quantum mechanics.
(5396 views)