 # Theory of Functions of a Real Variable Theory of Functions of a Real Variable
by

Number of pages: 393

Description:
I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

## Similar books Introduction to Infinitesimal Analysis: Functions of One Real Variable
by - John Wiley & Sons
This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.
(10363 views) Foundations of Analysis
by
The goal is to develop in students the mathematical maturity they will need when they move on to senior level mathematics courses, and to present a rigorous development of the calculus, beginning with the properties of the real number system.
(5417 views) An Introductory Course Of Mathematical Analysis
by - Cambridge University Press
Originally published in 1926, this text was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. A prominence is given to inequalities.
(3945 views) Irrational Numbers and Their Representation by Sequences and Series
by - J. Wiley & sons
This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.
(3864 views)