**Theory of Functions of a Real Variable**

by Shlomo Sternberg

2005**Number of pages**: 393

**Description**:

I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Irrational Numbers and Their Representation by Sequences and Series**

by

**Henry Parker Manning**-

**J. Wiley & sons**

This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.

(

**2408**views)

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**11091**views)

**Introduction to Mathematical Analysis**

by

**B. Lafferriere, G. Lafferriere, N. Mau Nam**-

**Portland State University Library**

We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.

(

**5065**views)

**A Course Of Mathematical Analysis**

by

**Shanti Narayan**-

**S.Chand And Company**

Contents: Dedekind's theory of Real Numbers; Bounds and Limiting Points; Sequences; Real Valued Functions of a Real Variable; The derivative; Riemann Theory of Integration; Uniform Convergence; Improper Integrals; Fourier Series; and more.

(

**19795**views)