**Tight and Taut Submanifolds**

by Thomas E. Cecil, Shiing-shen Chern

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 0521620473**ISBN-13**: 9780521620475**Number of pages**: 349

**Description**:

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six in-depth articles by leading experts in the field and an extensive bibliography.

Download or read it online for free here:

**Download link**

(multiple PDF/PS files)

## Similar books

**Gauge Theory for Fiber Bundles**

by

**Peter W. Michor**-

**Universitaet Wien**

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...

(

**5031**views)

**Principles of Differential Geometry**

by

**Taha Sochi**-

**viXra**

A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.

(

**2113**views)

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**5584**views)

**Orthonormal Basis in Minkowski Space**

by

**Aleks Kleyn, Alexandre Laugier**-

**arXiv**

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.

(

**5863**views)