**Flavors of Geometry**

by Silvio Levy

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 0521629624**ISBN-13**: 9780521629621**Number of pages**: 208

**Description**:

This book collects accessible lectures on four geometrically flavored fields of mathematics that have experienced great development in recent years: hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture course start with elementary concepts, proceeds through highlights of the field, and concludes with a taste of advanced material.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Combinatorial and Computational Geometry**

by

**J. E. Goodman, J. Pach, E. Welzl**-

**Cambridge University Press**

This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.

(

**10440**views)

**Fractal Geometry**

by

**Michael Frame, Benoit Mandelbrot, Nial Neger**-

**Yale University**

This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.

(

**11856**views)

**An Elementary Course in Synthetic Projective Geometry**

by

**Derrick Norman Lehmer**-

**Project Gutenberg**

The book gives, in a simple way, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.

(

**8602**views)

**The Radon Transform**

by

**Sigurdur Helgason**-

**Birkhauser Boston**

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.

(

**9827**views)