**Flavors of Geometry**

by Silvio Levy

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 0521629624**ISBN-13**: 9780521629621**Number of pages**: 208

**Description**:

This book collects accessible lectures on four geometrically flavored fields of mathematics that have experienced great development in recent years: hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture course start with elementary concepts, proceeds through highlights of the field, and concludes with a taste of advanced material.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**12980**views)

**The Radon Transform**

by

**Sigurdur Helgason**-

**Birkhauser Boston**

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.

(

**9408**views)

**Fractal Geometry**

by

**Michael Frame, Benoit Mandelbrot, Nial Neger**-

**Yale University**

This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.

(

**11331**views)

**The Geometry of the Sphere**

by

**John C. Polking**-

**Rice University**

We are interested here in the geometry of an ordinary sphere. In plane geometry we study points, lines, triangles, polygons, etc. On the sphere there are no straight lines. Therefore it is natural to use great circles as replacements for lines.

(

**6692**views)