**Comparison Geometry**

by Karsten Grove, Peter Petersen

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 052108945X**ISBN-13**: 9780521089456**Number of pages**: 262

**Description**:

Comparison Geometry asks: What can we say about a Riemannian manifold if we know a bound for its curvature, and perhaps something about its topology? This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach. The historical evolution of the subject is summarized in charts and tables of examples.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**4746**views)

**Lectures on Minimal Surface Theory**

by

**Brian White**-

**arXiv**

The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.

(

**3354**views)

**Discrete Differential Geometry: An Applied Introduction**

by

**M. Desbrun, P. Schroeder, M. Wardetzky**-

**Columbia University**

This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).

(

**8833**views)

**Ricci-Hamilton Flow on Surfaces**

by

**Li Ma**-

**Tsinghua University**

Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.

(

**4780**views)