**An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics**

by William Elwood Byerly

**Publisher**: Ginn and company 1893**ISBN/ASIN**: 1116151464**Number of pages**: 309

**Description**:

From the table of contents: Development in Trigonometric Series; Convergence of Fourier's Series; Solution of Problems in Physics by the Aid of Fourier's Integrals and Fourier's Series; Zonal Harmonics; Spherical Harmonics; Cylindrical Harmonics; Laplace's Equation in Curvilinear Coordinates. Ellipsoidal Harmonics.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Applications of global analysis in mathematical physics**

by

**Jerrold E. Marsden**-

**Publish or Perish, inc**

The book introduces some methods of global analysis which are useful in various problems of mathematical physics. The author wants to make use of ideas from geometry to shed light on problems in analysis which arise in mathematical physics.

(

**11135**views)

**Classical and Quantum Mechanics via Lie algebras**

by

**Arnold Neumaier, Dennis Westra**-

**arXiv**

This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.

(

**8622**views)

**The Place of Partial Differential Equations in Mathematical Physics**

by

**Ganesh Prasad**-

**Patna University**

The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.

(

**1457**views)

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**11215**views)