**Semi-Riemann Geometry and General Relativity**

by Shlomo Sternberg

2003**Number of pages**: 251

**Description**:

This book represents course notes for a one semester course at the undergraduate level giving an introduction to Riemannian geometry and its principal physical application, Einsteinâ€™s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus, preferably in the language of differential forms.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**A Panoramic View of Riemannian Geometry**

by

**Marcel Berger**-

**Springer**

In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

(

**6950**views)

**A Course in Riemannian Geometry**

by

**David R. Wilkins**-

**Trinity College, Dublin**

From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.

(

**6742**views)

**Holonomy Groups in Riemannian Geometry**

by

**Andrew Clarke, Bianca Santoro**-

**arXiv**

The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.

(

**4222**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**9191**views)