**Clifford Algebra, Geometric Algebra, and Applications**

by Douglas Lundholm, Lars Svensson

**Publisher**: arXiv 2009**Number of pages**: 117

**Description**:

These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**Smarandache Semirings, Semifields and Semivector Spaces**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.

(

**11917**views)

**Abstract Algebra: The Basic Graduate Year**

by

**Robert B. Ash**

Text for a graduate course in abstract algebra, it covers fundamental algebraic structures (groups, rings, fields, modules), and maps between them. The text is written in conventional style, the book can be used as a classroom text or as a reference.

(

**18091**views)

**An introduction to Noncommutative Projective Geometry**

by

**D. Rogalski**-

**arXiv**

These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

(

**8925**views)

**Universal Algebra for Computer Science**

by

**Eric G. Wagner**-

**Wagner Mathematics**

A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.

(

**14992**views)