Logo

Clifford Algebra, Geometric Algebra, and Applications

Small book cover: Clifford Algebra, Geometric Algebra, and Applications

Clifford Algebra, Geometric Algebra, and Applications
by

Publisher: arXiv
Number of pages: 117

Description:
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Home page url

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: Infinite-dimensional Lie AlgebrasInfinite-dimensional Lie Algebras
by - University of Edinburgh
Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.
(8354 views)
Book cover: Noncommutative RingsNoncommutative Rings
by
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(6882 views)
Book cover: Algebraic InvariantsAlgebraic Invariants
by - J. Wiley & Sons
This introduction to the classical theory of invariants of algebraic forms is divided into three parts: linear transformations; algebraic properties of invariants and covariants; symbolic notation of Aronhold and Clebsch.
(5968 views)
Book cover: Smarandache LoopsSmarandache Loops
by - American Research Press
The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.
(6346 views)