**Clifford Algebra, Geometric Algebra, and Applications**

by Douglas Lundholm, Lars Svensson

**Publisher**: arXiv 2009**Number of pages**: 117

**Description**:

These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**The Construction and Study of Certain Important Algebras**

by

**Claude Chevalley**-

**The Mathematical Society Of Japan**

This is the reproduction of the beautiful lectures delivered by Professor C. Chevalley at the University of Tokyo in April-June 1954. Contents: Graded algebras; Tensor algebras; Clifford algebras; Some applications of exterior algebras.

(

**6226**views)

**Noncommutative Rings**

by

**Michael Artin**

From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.

(

**7191**views)

**An Introduction to Nonassociative Algebras**

by

**Richard D. Schafer**-

**Project Gutenberg**

Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students.

(

**9743**views)

**The Octonions**

by

**John C. Baez**-

**University of California**

The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.

(

**14859**views)