**Introduction to Lie Groups, Adjoint Action and Some Generalizations**

by Marcos M. Alexandrino, Renato G. Bettiol

**Publisher**: arXiv 2010**Number of pages**: 129

**Description**:

The main purpose of these lecture notes is to provide a concise introduction to Lie groups, Lie algebras, and isometric and adjoint actions, aiming mostly at advanced undergraduate and graduate students. A special focus is given to maximal tori and roots of compact Lie groups, exploring its connection with isoparametric submanifolds and polar actions.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Lecture Notes in Lie Groups**

by

**Vladimir G. Ivancevic, Tijana T. Ivancevic**-

**arXiv**

These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.

(

**5985**views)

**An Introduction to Lie Group Integrators**

by

**E. Celledoni, H. Marthinsen, B. Owren**-

**arXiv**

The authors give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented ...

(

**1544**views)

**Lie Groups, Physics, and Geometry**

by

**Robert Gilmore**-

**Drexel University**

The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.

(

**7358**views)

**Lectures on Lie Groups and Representations of Locally Compact Groups**

by

**F. Bruhat**-

**Tata Institute of Fundamental Research**

We consider some heterogeneous topics relating to Lie groups and the general theory of representations of locally compact groups. We have rigidly adhered to the analytic approach in establishing the relations between Lie groups and Lie algebras.

(

**7210**views)