**Classical and Quantum Mechanics via Lie algebras**

by Arnold Neumaier, Dennis Westra

**Publisher**: arXiv 2011**Number of pages**: 503

**Description**:

The goal of this book is to present classical mechanics, quantum mechanics, and statistical mechanics in an almost completely algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups. The book emphasizes the closeness of classical and quantum mechanics, and the material is selected in a way to make this closeness as apparent as possible.

Download or read it online for free here:

**Download link**

(2.4MB, PDF)

## Similar books

**Mirror Symmetry**

by

**Cumrun Vafa, Eric Zaslow**-

**American Mathematical Society**

The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.

(

**14217**views)

**Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics**

by

**Young Suh Kim (ed.)**-

**MDPI AG**

With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.

(

**6499**views)

**Lectures on Integrable Hamiltonian Systems**

by

**G.Sardanashvily**-

**arXiv**

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.

(

**9163**views)

**Mathematics for the Physical Sciences**

by

**Herbert S Wilf**-

**Dover Publications**

The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.

(

**45807**views)