**Classical and Quantum Mechanics via Lie algebras**

by Arnold Neumaier, Dennis Westra

**Publisher**: arXiv 2011**Number of pages**: 503

**Description**:

The goal of this book is to present classical mechanics, quantum mechanics, and statistical mechanics in an almost completely algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups. The book emphasizes the closeness of classical and quantum mechanics, and the material is selected in a way to make this closeness as apparent as possible.

Download or read it online for free here:

**Download link**

(2.4MB, PDF)

## Similar books

**Mathemathical Methods of Theoretical Physics**

by

**Karl Svozil**-

**Edition Funzl**

This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.

(

**7023**views)

**Lecture Notes on Mathematical Methods of Classical Physics**

by

**Vicente Cortes, Alexander S. Haupt**-

**arXiv**

Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.

(

**5069**views)

**Lectures on Three-Dimensional Elasticity**

by

**P. G. Ciarlet**-

**Tata Institute of Fundamental Research**

In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.

(

**6229**views)

**Topics in Spectral Theory**

by

**Vojkan Jaksic**-

**McGill University**

The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.

(

**6281**views)