Short introduction to Nonstandard Analysis

Small book cover: Short introduction to Nonstandard Analysis

Short introduction to Nonstandard Analysis

Publisher: arXiv
Number of pages: 197

These lecture notes offer a short and rigorous introduction to Nostandard Analysis, mainly aimed to reach to a presentation of the basics of Loeb integration, and in particular, Loeb measures. The Abraham Robinson version of Nostandard Analysis is pursued, with a respective incursion into Superstructures. Two formal languages are used, one simpler at first, and then later, one for the full blown theory.

Home page url

Download or read it online for free here:
Download link
(830KB, PDF)

Similar books

Book cover: Jacobi Operators and Complete Integrable Nonlinear LatticesJacobi Operators and Complete Integrable Nonlinear Lattices
by - American Mathematical Society
Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.
Book cover: Linear Mathematics In Infinite DimensionsLinear Mathematics In Infinite Dimensions
by - The Ohio State University
Contents: Infinite Dimensional Vector Spaces; Fourier Theory; Sturm-Liouville Theory; Green's Function Theory; Special Function Theory; Partial Differential Equations; System of Partial Differential Equations: How to Solve Maxwell's Equations ...
Book cover: Lectures on Topics in AnalysisLectures on Topics in Analysis
by - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
Book cover: Reader-friendly Introduction to the Measure TheoryReader-friendly Introduction to the Measure Theory
by - Yetanotherquant.de
This is a very clear and user-friendly introduction to the Lebesgue measure theory. After reading these notes, you will be able to read any book on Real Analysis and will easily understand Lebesgue integral and other advanced topics.