**An Introduction to Semialgebraic Geometry**

by Michel Coste

**Publisher**: Universite de Rennes 2002**Number of pages**: 78

**Description**:

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Geometric Complexity Theory: An Introduction for Geometers**

by

**J.M. Landsberg**-

**arXiv**

This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.

(

**6375**views)

**Analysis on Homogeneous Spaces**

by

**Ralph Howard**-

**Royal Institute of Technology Stockholm**

The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.

(

**6871**views)

**Algebraic Geometry**

by

**J.S. Milne**

These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.

(

**13064**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**14998**views)