**Smarandache Semigroups**

by W. B. Vasantha Kandasamy

**Publisher**: American Research Press 2002**ISBN/ASIN**: 1931233594**ISBN-13**: 9781931233590**Number of pages**: 95

**Description**:

This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:

**Download link**

(500KB, PDF)

## Similar books

**Interval Groupoids**

by

**W. B. V. Kandasamy, F. Smarandache, M. K. Chetry**-

**arXiv**

This book defines new classes of groupoids, like matrix groupoid, polynomial groupoid, interval groupoid, and polynomial groupoid. This book introduces 77 new definitions substantiated and described by 426 examples and 150 theorems.

(

**7845**views)

**Introduction to Lie Groups and Lie Algebras**

by

**Alexander Kirillov, Jr.**-

**SUNY at Stony Brook**

The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.

(

**12385**views)

**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by

**Predrag Cvitanovic**-

**Princeton University Press**

A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.

(

**13024**views)

**An Elementary Introduction to Groups and Representations**

by

**Brian C. Hall**-

**arXiv**

An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.

(

**16517**views)