**Smarandache Semigroups**

by W. B. Vasantha Kandasamy

**Publisher**: American Research Press 2002**ISBN/ASIN**: 1931233594**ISBN-13**: 9781931233590**Number of pages**: 95

**Description**:

This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:

**Download link**

(500KB, PDF)

## Similar books

**Introduction to Groups, Invariants and Particles**

by

**Frank W. K. Firk**-

**Orange Grove Texts Plus**

This is an introduction to group theory, with an emphasis on Lie groups and their application to the study of symmetries of the fundamental constituents of matter. The text was written for seniors and advanced juniors, majoring in the physical sciences.

(

**13774**views)

**Galois Groups and Fundamental Groups**

by

**David Meredith**-

**San Francisco State University**

This course brings together two areas of mathematics that each concern symmetry -- symmetry in algebra, in the case of Galois theory; and symmetry in geometry, in the case of fundamental groups. Prerequisites are courses in algebra and analysis.

(

**6089**views)

**Symmetry Groups and Their Applications**

by

**Willard Miller**-

**Academic Press**

A beginning graduate level book on applied group theory. Only those aspects of group theory are treated which are useful in the physical sciences, but the mathematical apparatus underlying the applications is presented with a high degree of rigor.

(

**9589**views)

**Lectures on Topics In The Theory of Infinite Groups**

by

**B.H. Neumann**-

**Tata Institute of Fundamental Research**

As the title suggests, the aim was not a systematic treatment of infinite groups. Instead the author tried to present some of the methods and results that are new and look promising, and that have not yet found their way into the books.

(

**5229**views)