**Applied Mathematical Programming**

by S. Bradley, A. Hax, T. Magnanti

**Publisher**: Addison-Wesley 1977**ISBN/ASIN**: 020100464X**ISBN-13**: 9780201004649**Number of pages**: 716

**Description**:

This book shows you how to model a wide array of problems, and explains the mathematical algorithms and techniques behind the modeling. Covered are topics such as linear programming, duality theory, sensitivity analysis, network/dynamic programming, integer programming, non-linear programming, and my favorite, large-scale problems modeling/solving, etc.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**An Introduction to Nonlinear Optimization Theory**

by

**Marius Durea, Radu Strugariu**-

**De Gruyter Open**

Starting with the case of differentiable data and the classical results on constrained optimization problems, continuing with the topic of nonsmooth objects involved in optimization, the book concentrates on both theoretical and practical aspects.

(

**2633**views)

**Discrete Optimization**

by

**Guido Schaefer**-

**Utrecht University**

From the table of contents: Preliminaries (Optimization Problems); Minimum Spanning Trees; Matroids; Shortest Paths; Maximum Flows; Minimum Cost Flows; Matchings; Integrality of Polyhedra; Complexity Theory; Approximation Algorithms.

(

**4390**views)

**Linear Optimisation and Numerical Analysis**

by

**Ian Craw**-

**University of Aberdeen**

The book describes the simplex algorithm and shows how it can be used to solve real problems. It shows how previous results in linear algebra give a framework for understanding the simplex algorithm and describes other optimization algorithms.

(

**10522**views)

**The Design of Approximation Algorithms**

by

**D. P. Williamson, D. B. Shmoys**-

**Cambridge University Press**

This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.

(

**10361**views)