**Abelian Varieties**

by J. S. Milne

2008**Number of pages**: 172

**Description**:

An introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**From D-modules to Deformation Quantization Modules**

by

**Pierre Schapira**-

**UPMC**

The aim of these lecture notes is first to introduce the reader to the theory of D-modules in the analytical setting and also to make a link with the theory of deformation quantization (DQ for short) in the complex setting.

(

**2943**views)

**Algebraic Geometry over the Complex Numbers**

by

**Donu Arapura**-

**Purdue University**

Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.

(

**8056**views)

**Introduction to Stokes Structures**

by

**Claude Sabbah**-

**arXiv**

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.

(

**5051**views)

**Introduction to Algebraic Geometry**

by

**Yuriy Drozd**

From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.

(

**6817**views)