Logo

Introduction to Quantum Integrability

Small book cover: Introduction to Quantum Integrability

Introduction to Quantum Integrability
by

Publisher: arXiv
Number of pages: 56

Description:
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Home page url

Download or read it online for free here:
Download link
(390KB, PDF)

Similar books

Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(10256 views)
Book cover: Foundations Of Potential TheoryFoundations Of Potential Theory
by - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(1722 views)
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(4990 views)
Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
(8641 views)