**Introduction to Quantum Integrability**

by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos

**Publisher**: arXiv 2010**Number of pages**: 56

**Description**:

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Download or read it online for free here:

**Download link**

(390KB, PDF)

## Similar books

**Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem**

by

**Peter B. Gilkey**-

**Publish or Perish Inc.**

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.

(

**6826**views)

**Funky Mathematical Physics Concepts**

by

**Eric L. Michelsen**-

**UCSD**

This text covers some of the unusual or challenging concepts in graduate mathematical physics. This work is meant to be used with any standard text, to help emphasize those things that are most confusing for new students.

(

**5002**views)

**Lectures on Nonlinear Integrable Equations and their Solutions**

by

**A. Zabrodin**-

**arXiv.org**

This is an introductory course on nonlinear integrable partial differential and differential-difference equations based on lectures given for students of Moscow Institute of Physics and Technology and Higher School of Economics.

(

**1472**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**5446**views)