**Introduction to Quantum Integrability**

by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos

**Publisher**: arXiv 2010**Number of pages**: 56

**Description**:

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Download or read it online for free here:

**Download link**

(390KB, PDF)

## Similar books

**The Place of Partial Differential Equations in Mathematical Physics**

by

**Ganesh Prasad**-

**Patna University**

The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.

(

**1033**views)

**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by

**Solomon I. Khmelnik**-

**MiC**

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.

(

**5366**views)

**Lecture Notes on Quantum Brownian Motion**

by

**Laszlo Erdos**-

**arXiv**

Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.

(

**4727**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**3825**views)