**Introduction to Quantum Integrability**

by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos

**Publisher**: arXiv 2010**Number of pages**: 56

**Description**:

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Download or read it online for free here:

**Download link**

(390KB, PDF)

## Similar books

**Lie Theory and Special Functions**

by

**Willard Miller**-

**Academic Press**

The book studies the role played by special function theory in the formalism of mathematical physics. It demonstrates that special functions which arise in mathematical models are dictated by symmetry groups admitted by the models.

(

**8808**views)

**Elements for Physics: Quantities, Qualities, and Intrinsic Theories**

by

**Albert Tarantola**-

**Springer**

Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.

(

**11416**views)

**A Mathematics Primer for Physics Graduate Students**

by

**Andrew E. Blechman**

The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.

(

**18051**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**8279**views)