Logo

Information Theory and Statistical Physics

Small book cover: Information Theory and Statistical Physics

Information Theory and Statistical Physics
by

Publisher: arXiv
Number of pages: 176

Description:
This document consists of lecture notes for a graduate course, which focuses on the relations between Information Theory and Statistical Physics. The course is aimed at EE graduate students in the area of Communications and Information Theory, as well as to graduate students in Physics who have basic background in Information Theory. Strong emphasis is given to the analogy and parallelism between Information Theory and Statistical Physics, as well as to the insights, the analysis tools and techniques that can be borrowed from Statistical Physics and 'imported' to certain problem areas in Information Theory.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Information-Theoretic IncompletenessInformation-Theoretic Incompleteness
by - World Scienti c
In this mathematical autobiography, Gregory Chaitin presents a technical survey of his work and a non-technical discussion of its significance. The technical survey contains many new results, including a detailed discussion of LISP program size.
(4574 views)
Book cover: Data Compression ExplainedData Compression Explained
by - mattmahoney.net
This book is for the reader who wants to understand how data compression works, or who wants to write data compression software. Prior programming ability and some math skills will be needed. This book is intended to be self contained.
(4291 views)
Book cover: Logic and InformationLogic and Information
by - ESSLLI
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.
(5098 views)
Book cover: Entropy and Information TheoryEntropy and Information Theory
by - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(10378 views)