Logo

Introduction to Stokes Structures

Small book cover: Introduction to Stokes Structures

Introduction to Stokes Structures
by

Publisher: arXiv
Number of pages: 157

Description:
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Lectures on Deformations of SingularitiesLectures on Deformations of Singularities
by - Tata Institute of Fundamental Research
These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.
(6435 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(11827 views)
Book cover: Introduction to Algebraic GeometryIntroduction to Algebraic Geometry
by - Indian Institute of Technology Bombay
This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.
(6529 views)
Book cover: Introduction to Projective VarietiesIntroduction to Projective Varieties
by - Universidad Complutense de Madrid
The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.
(7306 views)