**Introduction to Stokes Structures**

by Claude Sabbah

**Publisher**: arXiv 2010**Number of pages**: 157

**Description**:

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures on An Introduction to Grothendieck's Theory of the Fundamental Group**

by

**J.P. Murre**-

**Tata Institute of Fundamental Research**

The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.

(

**8619**views)

**Algebraic Groups and Discontinuous Subgroups**

by

**Armand Borel, George D. Mostow**-

**American Mathematical Society**

The book covers linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces, vector valued cohomology and deformation of discrete subgroups, etc.

(

**13219**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**16082**views)

**Lectures on Torus Embeddings and Applications**

by

**Tadao Oda**-

**Tata Institute of Fundamental Research**

Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.

(

**8620**views)