Logo

An Introduction to Topos Physics

An Introduction to Topos Physics
by

Publisher: arXiv
Number of pages: 104

Description:
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can further the study of quantum logic and give rise to new and 'neo-realistic' descriptions of quantum physics, i.e. make possible the construction of a general scheme for quantum physics, which 'looks like' the classical one.

Home page url

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: The Landscape of Theoretical PhysicsThe Landscape of Theoretical Physics
by - arXiv
This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, and much more.
(12450 views)
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(7965 views)
Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(9354 views)
Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(18138 views)