Logo

Introduction to the Galois Theory of Linear Differential Equations

Large book cover: Introduction to the Galois Theory of Linear Differential Equations

Introduction to the Galois Theory of Linear Differential Equations
by

Publisher: arXiv
ISBN/ASIN: 3540442286
Number of pages: 83

Description:
The author's goal was to give the audience an introduction to the algebraic, analytic and algorithmic aspects of the Galois theory of linear differential equations by focusing on some of the main ideas and philosophies and on examples.

Home page url

Download or read it online for free here:
Download link
(650KB, PDF)

Similar books

Book cover: Ordinary Differential Equations: A Systems ApproachOrdinary Differential Equations: A Systems Approach
by
This is a revision of a text that was on the market for a while. It focuses on systems of differential equations. Some popular topics, which were present in the original text, have been left out to concentrate on the initial value problem.
(8446 views)
Book cover: Ordinary Differential Equations and Dynamical SystemsOrdinary Differential Equations and Dynamical Systems
by - Universitaet Wien
This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem.
(14143 views)
Book cover: Differential Equations and Linear AlgebraDifferential Equations and Linear Algebra
by - Heriot-Watt University
From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.
(7957 views)
Book cover: Examples of differential equations, with rules for their solutionExamples of differential equations, with rules for their solution
by - Boston, Ginn & Company
This work has been prepared to meet a want in a course on the subject, arranged for advanced students in Physics. It could be used in connection with lectures on the theory of Differential Equations and the derivation of the methods of solution.
(6275 views)