**Complex Manifolds and Hermitian Differential Geometry**

by Andrew D. Hwang

**Publisher**: University of Toronto 1997**Number of pages**: 113

**Description**:

The intent of this text is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. The author provides a number of interesting and non-trivial examples, both in the text and in the exercises.

Download or read it online for free here:

**Download link**

(850KB, PDF)

## Similar books

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**10713**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**11658**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**12722**views)

**Kähler-Einstein metrics: Old and New**

by

**Daniele Angella, Cristiano Spotti**-

**arXiv.org**

We present classical and recent results on Kaehler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for author's course.

(

**1444**views)