**Complex Manifolds and Hermitian Differential Geometry**

by Andrew D. Hwang

**Publisher**: University of Toronto 1997**Number of pages**: 113

**Description**:

The intent of this text is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. The author provides a number of interesting and non-trivial examples, both in the text and in the exercises.

Download or read it online for free here:

**Download link**

(850KB, PDF)

## Similar books

**Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems**

by

**E. Vesentini**-

**Tata Institute Of Fundamental Research**

These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.

(

**5416**views)

**Complex Manifolds**

by

**Julius Ross**-

**Stanford University**

From the table of contents: Complex Manifolds; Almost Complex Structures; Differential Forms; Poincare Lemma; Sheaves and Cohomology; Several Complex Variables; Holomorphic Vector Bundles; Kaehler Manifolds; Hodge Theory; Lefschetz Theorems; etc.

(

**1924**views)

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**10991**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**11940**views)