**Introduction to Arithmetic Groups**

by Dave Witte Morris

**Publisher**: arXiv 2015**Number of pages**: 491

**Description**:

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

Download or read it online for free here:

**Download link**

(7.1MB, PDF)

## Similar books

**Groups as Graphs**

by

**W. B. V. Kandasamy, F. Smarandache**-

**CuArt**

In this book, for the first time, the authors represented every finite group in the form of a graph. This study is significant because properties of groups can be immediately obtained by looking at the graphs of the groups.

(

**10077**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**10364**views)

**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by

**Predrag Cvitanovic**-

**Princeton University Press**

A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.

(

**13027**views)

**Thin Groups and Superstrong Approximation**

by

**Emmanuel Breuillard, Hee Oh (eds.)**-

**Cambridge University Press**

This book focuses on recent developments concerning various quantitative aspects of thin groups. It provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.

(

**4569**views)