**Neutral and Non-Euclidean Geometries**

by David C. Royster

**Publisher**: UNC Charlotte 2000**Number of pages**: 145

**Description**:

In this course you are introduced, or re-introduced, to the method of Mathematical Proof. You will be introduced to new and interesting areas in Geometry, with most of the time spent on the study of Hyperbolic Geometry. We will learn one of the Fundamental Theorems of Mathematics that many students never get to see.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Non-Euclidean Geometry: A Critical and Historical Study of its Development**

by

**Roberto Bonola**-

**Open Court Publishing Company**

Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.

(

**5954**views)

**Hyperbolic Geometry**

by

**J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry**-

**MSRI**

These notes are intended as a relatively quick introduction to hyperbolic geometry. They review the wonderful history of non-Euclidean geometry. They develop a number of the properties that are particularly important in topology and group theory.

(

**5387**views)

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**3439**views)

**The Elements of Non-Euclidean Plane Geometry and Trigonometry**

by

**Horatio Scott Carslaw**-

**Longmans, Green and co.**

In this book the author has attempted to treat the Elements of Non-Euclidean Plane Geometry and Trigonometry in such a way as to prove useful to teachers of Elementary Geometry in schools and colleges. Hyperbolic and elliptic geometry are covered.

(

**5364**views)