Logo

Diophantine Analysis by R. D. Carmichael

Large book cover: Diophantine Analysis

Diophantine Analysis
by

Publisher: John Wiley & Sons
ISBN/ASIN: 1112422900
Number of pages: 120

Description:
The author's purpose in writing this book has been to supply the reader with a convenient introduction to Diophantine Analysis. No attempt has been made to include all special results, but a large number of them are to be found both in the text and in the exercises.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Distribution of Prime NumbersDistribution of Prime Numbers
by - Macquarie University
These notes were used by the author at Imperial College, University of London. The contents: arithmetic functions, elementary prime number theory, Dirichlet series, primes in arithmetic progressions, prime number theorem, Riemann zeta function.
(9334 views)
Book cover: Lectures on Sieve Methods and Prime Number TheoryLectures on Sieve Methods and Prime Number Theory
by - Tata Institute of Fundamental Research
The aim of these lectures is to introduce the readers to the most fascinating aspects of the fruitful unifications of sieve methods and analytical means which made possible such deep developments in prime number theory ...
(5357 views)
Book cover: Analytic Number Theory: A Tribute to Gauss and DirichletAnalytic Number Theory: A Tribute to Gauss and Dirichlet
by - American Mathematical Society
The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.
(7954 views)
Book cover: Lectures on a Method in the Theory of Exponential SumsLectures on a Method in the Theory of Exponential Sums
by - Tata Institute of Fundamental Research
The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.
(5008 views)