**Diophantine Analysis**

by R. D. Carmichael

**Publisher**: John Wiley & Sons 1915**ISBN/ASIN**: 1112422900**Number of pages**: 120

**Description**:

The author's purpose in writing this book has been to supply the reader with a convenient introduction to Diophantine Analysis. No attempt has been made to include all special results, but a large number of them are to be found both in the text and in the exercises.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Lectures on a Method in the Theory of Exponential Sums**

by

**M. Jutila**-

**Tata Institute of Fundamental Research**

The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.

(

**4629**views)

**An Introduction to Modular Forms**

by

**Henri Cohen**-

**arXiv.org**

Contents: Functional Equations; Elliptic Functions; Modular Forms and Functions; Hecke Operators: Ramanujan's discoveries; Euler Products, Functional Equations; Modular Forms on Subgroups of Gamma; More General Modular Forms; Some Pari/GP Commands.

(

**459**views)

**On Advanced Analytic Number Theory**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

During the winter semester 1959/60, the author delivered a series of lectures on Analytic Number Theory. It was his aim to introduce his hearers to some of the important and beautiful ideas which were developed by L. Kronecker and E. Hecke.

(

**5857**views)

**Introduction to Analytic Number Theory**

by

**A.J. Hildebrand**-

**University of Illinois**

Contents: Primes and the Fundamental Theorem of Arithmetic; Arithmetic functions (Elementary theory, Asymptotic estimates, Dirichlet series and Euler products); Distribution of primes; Primes in arithmetic progressions - Dirichlet's Theorem.

(

**6923**views)