Logo

Hyperbolic Functions by James McMahon

Large book cover: Hyperbolic Functions

Hyperbolic Functions
by

Publisher: John Wiley & Sons
ISBN/ASIN: 1161660127
Number of pages: 106

Description:
College students who wish to know something of the hyperbolic trigonometry on account of its important and historic relations to each of those branches, will find these relations presented in a simple and comprehensive way in the first half of the work. Readers who have some interest in imaginaries are then introduced to the more general trigonometry of the complex plane, where the circular and hyperbolic functions merge into one class of transcendents, the singly periodic functions, having either a real or a pure imaginary period.

Home page url

Download or read it online for free here:
Download link
(600KB, PDF)

Similar books

Book cover: Elliptic Functions and Elliptic CurvesElliptic Functions and Elliptic Curves
by - Institut de Mathematiques de Jussieu
Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.
(4643 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(10450 views)
Book cover: Lectures on Riemann MatricesLectures on Riemann Matrices
by - Tata Institute of Fundamental Research
A systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; etc.
(6050 views)
Book cover: Introduction to Complex AnalysisIntroduction to Complex Analysis
by - Macquarie University
Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.
(12177 views)