**Hyperbolic Functions**

by James McMahon

**Publisher**: John Wiley & Sons 1906**ISBN/ASIN**: 1161660127**Number of pages**: 106

**Description**:

College students who wish to know something of the hyperbolic trigonometry on account of its important and historic relations to each of those branches, will find these relations presented in a simple and comprehensive way in the first half of the work. Readers who have some interest in imaginaries are then introduced to the more general trigonometry of the complex plane, where the circular and hyperbolic functions merge into one class of transcendents, the singly periodic functions, having either a real or a pure imaginary period.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Elementary Analytic Functions: Complex Functions Theory a-1**

by

**Leif Mejlbro**-

**BookBoon**

This is an introductory book on complex functions theory. From the table of contents: Introduction; The Complex Numbers; Basic Topology and Complex Functions; Analytic Functions; Some elementary analytic functions; Index.

(

**9231**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**11911**views)

**Complex Variables with Applications**

by

**Jeremy Orloff**-

**LibreTexts**

Complex analysis is a basic tool in many mathematical theories. There are a small number of far-reaching theorems that we'll explore in the first part of the class. We'll touch on some mathematical and engineering applications of these theorems.

(

**584**views)

**Notes on Automorphic Functions**

by

**Anders Thorup**-

**Kobenhavns Universitet**

In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. From the contents: Moebius transformations; Discrete subgroups; Modular groups; Automorphic forms; Poincare Series and Eisenstein Series.

(

**10183**views)