**The Elements Of Non-Euclidean Geometry**

by Julian Lowell Coolidge

**Publisher**: Oxford At The Clarendon Press 1909**ISBN/ASIN**: 1603861491**Number of pages**: 282

**Description**:

Chapters Include: Foundation For Metrical Geometry In A Limited Region; Congruent Transformations; The Three Hypotheses; The Introduction Of Trigonometric Formulae; Analytic Formulae; Consistency And Significance Of The Axioms; The Geometric And Analytic Extension Of Space; The Groups Of Congruent Transformations; Point, Line, And Plane Treated Analytically; The Higher Line Geometry; The Circle And The Sphere; Conic Sections; Quadric Surfaces; Areas And Volumes; Introduction To Differential Geometry; etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Non-Euclidean Geometry**

by

**Henry Manning**-

**Ginn and Company**

This book gives a simple and direct account of the Non-Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The entire book can be read by one who has taken the mathematical courses commonly given in our colleges.

(

**10073**views)

**Euclid's Parallel Postulate: Its Nature, Validity and Place in Geometrical Systems**

by

**John William Withers**-

**Open Court Publishing Co.**

The parallel postulate is the only distinctive characteristic of Euclid. To pronounce upon its validity and general philosophical significance without endeavoring to know what Non-Euclideans have done would be an inexcusable blunder ...

(

**3534**views)

**Non-Euclidean Geometry: A Critical and Historical Study of its Development**

by

**Roberto Bonola**-

**Open Court Publishing Company**

Examines various attempts to prove Euclid's parallel postulate - by the Greeks, Arabs and Renaissance mathematicians. It considers forerunners and founders such as Saccheri, Lambert, Legendre, Gauss, Schweikart, Taurinus, J. Bolyai and Lobachewsky.

(

**6033**views)

**Geometry with an Introduction to Cosmic Topology**

by

**Mike Hitchman**

This text develops non-Euclidean geometry and geometry on surfaces at a level appropriate for undergraduate students who completed a multivariable calculus course and are ready to practice habits of thought needed in advanced undergraduate courses.

(

**2312**views)