Logo

An Introduction to Noncommutative Spaces and their Geometry

Large book cover: An Introduction to Noncommutative Spaces and their Geometry

An Introduction to Noncommutative Spaces and their Geometry
by

Publisher: arXiv
ISBN/ASIN: 3540635092
Number of pages: 186

Description:
These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists. We illustrate applications to Yang-Mills, fermionic and gravity models, notably we describe the spectral action recently introduced by Chamseddine and Connes. We also present an introduction to recent work on noncommutative lattices.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Geometry of Quantum MechanicsGeometry of Quantum Mechanics
by - Stockholms universitet, Fysikum
These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.
(14605 views)
Book cover: The Geometrization of PhysicsThe Geometrization of Physics
by - University of California at Irvine
The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.
(13356 views)
Book cover: Edinburgh Lectures on Geometry, Analysis and PhysicsEdinburgh Lectures on Geometry, Analysis and Physics
by - arXiv
These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.
(10483 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(18389 views)