Logo

An Elementary Course in Synthetic Projective Geometry

Large book cover: An Elementary Course in Synthetic Projective Geometry

An Elementary Course in Synthetic Projective Geometry
by

Publisher: Project Gutenberg
ISBN/ASIN: 1406700096
Number of pages: 120

Description:
The following course is intended to give, in as simple a way as possible, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Combinatorial and Computational GeometryCombinatorial and Computational Geometry
by - Cambridge University Press
This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.
(10088 views)
Book cover: Euclidean Plane and Its RelativesEuclidean Plane and Its Relatives
by
This book is meant to be rigorous, elementary and minimalist. At the same time it includes about the maximum what students can absorb in one semester. It covers Euclidean geometry, Inversive geometry, Non-Euclidean geometry and Additional topics.
(2404 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(12630 views)
Book cover: Geometry and the ImaginationGeometry and the Imagination
by - Rutgers University, Newark
These are notes from an experimental mathematics course entitled Geometry and the Imagination as developed by Conway, Doyle, Thurston and others. The course aims to convey the richness, diversity, connectedness, depth and pleasure of mathematics.
(1388 views)