
Differential Geometry Course Notes
by Richard Koch
Publisher: University of Oregon 2005
Number of pages: 188
Description:
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
Download or read it online for free here:
Download link
(15MB, PDF)
Similar books
Differential Geometry in Physicsby Gabriel Lugo - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(21020 views)
Elementary Differential Geometryby Gilbert Weinstein - UAB
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.
(15204 views)
Differential Geometry: A First Course in Curves and Surfacesby Theodore Shifrin - University of Georgia
Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).
(10165 views)
Topics in Differential Geometryby Peter W. Michor - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(13557 views)