**Lecture Notes on General Relativity**

by Matthias Blau

**Publisher**: Universitaet Bern 2014**Number of pages**: 928

**Description**:

The first half of this course will be dedicated to developing the machinery (of tensor calculus and Riemannian geometry) required to describe physics in a curved space time, i.e. in a gravitational field. In the second half of this course, we will then turn to various applications of General Relativity. Foremost among them is the description of the classical predictions of General Relativity and their experimental verification.

Download or read it online for free here:

**Download link**

(5.7MB, PDF)

## Similar books

**Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics**

by

**Mario Novello, Eduardo Bittencourt**-

**arXiv**

We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research...

(

**2504**views)

**Spacetime and Fields**

by

**Nikodem J. Poplawski**-

**arXiv**

A self-contained introduction to the classical theory of spacetime and fields. Topics: Spacetime (tensors, affine connection, curvature, metric, Lorentz group, spinors), Fields (principle of least action, action for gravitational field, matter, etc)

(

**7387**views)

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**11604**views)

**A No-Nonsense Introduction to General Relativity**

by

**Sean M. Carroll**

General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.

(

**4855**views)