**Introduction to Mathematical Logic: A problem solving course**

by Arnold W. Miller

**Publisher**: arXiv 1996**Number of pages**: 75

**Description**:

This is a set of 288 questions written for a Moore-style course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; Lowenheim-Skolem theorems; Turing machines, Church's Thesis; completeness theorem and first incompleteness theorem; undecidable theories; second incompleteness theorem.

Download or read it online for free here:

**Download link**

(430KB, PDF)

## Similar books

**forall x: An Introduction to Formal Logic**

by

**P.D. Magnus**

An introduction to sentential logic and first-order predicate logic with identity, logical systems that influenced twentieth-century analytic philosophy. The book should help students understand quantified expressions in their philosophical reading.

(

**12377**views)

**Algebraic Logic**

by

**H. Andreka, I. Nemeti, I. Sain**

Part I of the book studies algebras which are relevant to logic. Part II deals with the methodology of solving logic problems by (i) translating them to algebra, (ii) solving the algebraic problem, and (iii) translating the result back to logic.

(

**11806**views)

**A Problem Course in Mathematical Logic**

by

**Stefan Bilaniuk**

An introduction to mathematical logic for undergraduates. It supplies definitions, statements of results, and problems, along with some explanations, examples, and hints. The idea is to learn the material by solving the problems.

(

**15405**views)

**What is Mathematics: Gödel's Theorem and Around**

by

**Karlis Podnieks**-

**University of Latvia**

Textbook for students in mathematical logic and foundations of mathematics. Contents: Platonism, intuition and the nature of mathematics; Axiomatic Set Theory; First Order Arithmetic; Hilbert's Tenth Problem; Incompleteness Theorems; Godel's Theorem.

(

**2798**views)