**An Introduction to Gaussian Geometry**

by Sigmundur Gudmundsson

**Publisher**: Lund University 2009**Number of pages**: 75

**Description**:

The purpose of these notes is to introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra, real analysis of several variables, and basic knowledge of the classical theory of ordinary differential equations and some topology.

Download or read it online for free here:

**Download link**

(370KB, PDF)

## Similar books

**Discrete Differential Geometry: An Applied Introduction**

by

**M. Desbrun, P. Schroeder, M. Wardetzky**-

**Columbia University**

This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).

(

**9550**views)

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**6785**views)

**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by

**Dominic Joyce**-

**arXiv**

An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

(

**7828**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**10597**views)