**An Introduction to Gaussian Geometry**

by Sigmundur Gudmundsson

**Publisher**: Lund University 2009**Number of pages**: 75

**Description**:

The purpose of these notes is to introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra, real analysis of several variables, and basic knowledge of the classical theory of ordinary differential equations and some topology.

Download or read it online for free here:

**Download link**

(370KB, PDF)

## Similar books

**Discrete Differential Geometry: An Applied Introduction**

by

**M. Desbrun, P. Schroeder, M. Wardetzky**-

**Columbia University**

This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).

(

**8841**views)

**Exterior Differential Systems**

by

**Robert L. Bryant, et al.**-

**MSRI**

An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.

(

**1434**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**9951**views)

**Ricci Flow and the Poincare Conjecture**

by

**John Morgan, Gang Tian**-

**American Mathematical Society**

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

(

**7001**views)